

CSC Muon Trigger Overview

Jay Hauser
University of California Los Angeles
May 2001

Talk Outline

- Brief technical overview of the CSC muon trigger
- Progress thus far
- Remaining technical issues
- Project status

CMS Endcap Muon System

CMS Muon Endcap System

- 3 or 4 stations
- Each CSC chamber has six planes:
 - 1. Radial cathode strips for precision muon position and bend direction measurement
 - 2. Anode wires for timing (bunch ID) and non-bend position measurement

CSC Muon Triggering

- Trigger primitives are wire and strip segments
 - Wires give 25ns bunch crossing
 - Strips give precision φ information
- Link trigger primitives into tracks
- Assign p_T , j, and h
- Send highest quality tracks to Global L1

Responsibilities

Current Project Status

- (Trigger primitives are formally part of Endcap Muon project
 - Several rounds of prototyping and test beams done
 - On-chamber electronics: production starting soon
 - Off-chamber electronics: production following year)
- First Track Finder system (TRIDAS) prototyped successfully last year
 - Also, trigger part of CMS OO simulation package has been developed
 - Some hardware modifications are desired:
 - Decrease latency
 - Implement DAQ diagnostic readout
- Present and future activities
 - Last 6 months: R&D on optical links, FPGA logic, memory look-ups, backplane technology, and DAQ readout
 - Will need to build a CSC Muon Sorter module as well
 - Planning for 2nd prototype round is under discussion

Track Finder Prototype

✓ FY 2000 focus was on producing and testing a Track Finder prototype during summer:

Items produced:

- Backplane (Florida)
- Sector Processor (Florida)
- Muon Port Card (Rice)
- Clock and Control Board (Rice)
- Sector Receiver (UCLA)
- Test software support (all)

- ✓ Results included in Trigger TDR (Oct. 2000):
 - > Input data bits loaded into Port Card or SR
 - > Data clocked through MPC SR SP at full speed
 - > Results examined for validity

Technical Issues (I)

- Level 1 trigger latency
 - Front-end buffer size is limited (tracking, pre-radiators)
 - Track Finder must deliver muons to GMT by 79 crossings (1975 ns)
 after muon collision
 - Present prototypes (including trigger primitive electronics) are too slow – some surprises were encountered, e.g. Channel-Link latency about 100 ns (x5 places used)
 - How to reach requirement is understood:
 - √ Optimize data transfer protocols between boards
 - ✓ Decrease some bit counts
 - √ Faster FPGA chips (often 80 MHz versus 40 MHz)
 - Improved FPGA algorithms underway

Technical Issues (II)

- DAQ diagnostic readout
 - Emu trigger system will store raw data bits
 - Useful for debugging to have intermediate trigger calculations:
 - Input to Sector Receiver: CSC trigger primitives
 - Output of Sector Processor: CSC muon tracks
 - CMS switched to S-link protocol for DAQ transfer, 200 Mbyte/sec, convenient FIFO output format. We plan to connect to an Ohio State-designed DAQ readout board via optical fiber.
 - Concentrator module is needed 200 Mbyte/sec should be "full"
- HDL programming (engineers vs. physicists)
 - Present prototype FPGAs use mix of schematics, AHDL
 - Would like all FPGAs to be implemented in HDL
 - Would like physicists to be able to edit the HDL

Personnel

Professors

Darin Acosta (Florida), Robert Cousins (UCLA), Jay Hauser (UCLA),
 Paul Padley (Rice)

Postdocs

 Song Ming Wang (Florida), Benn Tannenbaum (UCLA), Slava Valouev (UCLA)

Students

Jason Mumford (UCLA)

Engineers

 JK (UCLA), Alex Madorsky (Florida), Mike Matveev (Rice), Ted Nussbaum (Rice)

Collaborating engineers (all PNPI)

 Victor Golovtsov, previously Alex Atamanchuk, Boris Razmyslovich, Vlad Sedov

Conclusions

The CSC muon trigger is now on a firm footing

- ✓ Successful prototyping
- √ Full simulation package now available
- √ Technical solutions to all problems are known

Plans for future developments are being made

❖ We would like support from the review committee for these plans (see Darin/Paul's talks)

Base program cutbacks will/would definitely hurt this project

- CSC trigger requires careful optimization simulation studies by physicists
- Post-docs and students will control the trigger "knobs" that are in FPGAs
- By 2004 (end of Project), engineering support will largely go away